Instability of an accretion disk with a magnetically driven wind

نویسنده

  • Xinwu Cao
چکیده

Abstract. We present a linear analysis of the stability of accretion disks in which angular momentum is removed by the magnetic torque exerted by a centrifugally driven wind. The effects of the dependence of the wind torque on field strength and inclination, the sub-Keplerian rotation due to magnetic forces, and the compression of the disk by the field are included. A WKB dispersion relation is derived for the stability problem. We find that the disk is always unstable if the wind torque is strong. At lower wind torques instability also occurs provided the rotation is close to Keplerian. The growth time scale of the instability can be as short as the orbital time scale. The instability is mainly the result of the sensitivity of the mass flux to changes in the inclination of the field at the disk surface. Magnetic diffusion in the disk stabilizes if the wind torque is small.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

Warping of Accretion Disks with Magnetically Driven Outflows: a Possible Origin for Jet Precession

Current theoretical models for the outflows/jets from AGN, X-ray binaries and young stellar objects involve large-scale magnetic fields threading an underlying accretion disk. We suggest that such a disk is subjected to warping instability and retrograde precession driven by magnetic torques associated with the outflow. The growth timescale for the disk warp and the precession period are of ord...

متن کامل

Formation of Magnetically Supported Disks During Hard-to-Soft Transition in Black Hole Accretion Flows

We carried out three-dimensional global resistive magnetohydrodynamic (MHD) simulations of the cooling instability in optically thin hot black hole accretion flows by assuming bremsstrahlung cooling. General relativistic effects are simulated by using the pseudo-Newtonian potential. Cooling instability grows when the density of the accretion disk becomes sufficiently large. We found that as the...

متن کامل

A Wind Driven Warping Instability in Accretion Disks

A wind passing over a surface may cause an instability in the surface such as the flapping seen when wind blows across a flag or waves when wind blows across water. We show that when a radially outflowing wind blows across a dense thin rotating disk, an initially flat disk is unstable to warping. When the wind is subsonic, the growth rate is dependent on the lift generated by the wind and the p...

متن کامل

The Influence of Hydrodynamical Winds on Hot Accretion Disk Solutions

The effect of a possible hydrodynamical wind on the nature of hot accretion disk solutions is studied. It is found that the advection dominated branch, in the presence of a wind, maintains the self-similar solution for the disk structure with the temperature, θ ∝ 1/r, optical depth τ ∝ r and accretion rate ṁ ∝ r . Based on global solutions cooling due to wind energy loss and advection are found...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001